Pharmakologietutorium Block 11

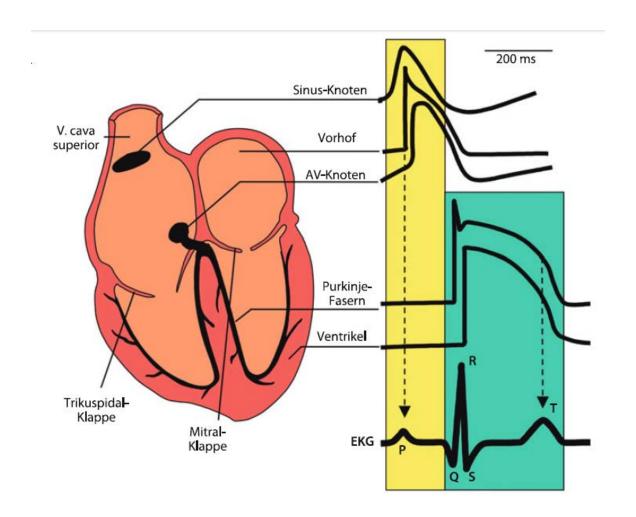
Antiarrhythmika und β-Blocker

Abkürzungen

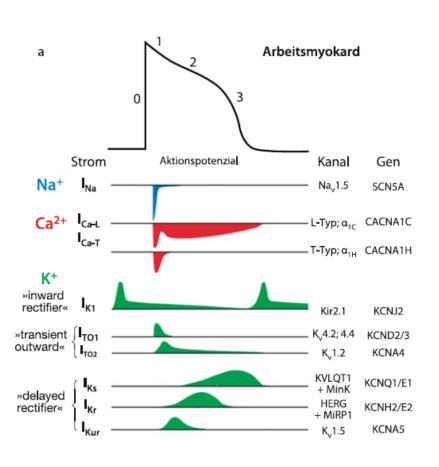
- PD = Pharmakodynamik
- PK = Pharmakokinetik
- NW = Nebenwirkungen
- WW = Wechselwirkungen
- KI = Kontraindikationen
- Ind = Indikationen

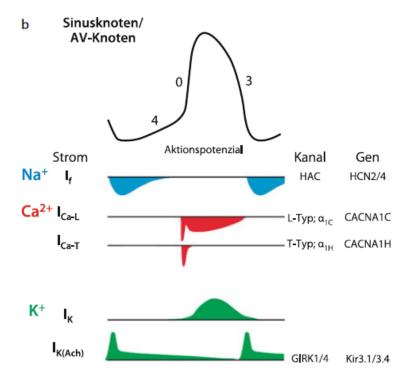
Antiarrhythmika

- EKG
- Herzphysiologie
- Herzrhythmusstörungen inkl.
 Pathophysiologie
- Antiarrhythmikaklassen
- Vorhofflimmern
- ECR Guidelines bei Rhythmusstörungen


Vorhofteil (EAG)		Kammerteil (EVG)			
lumi?	PQ- Strecke	Kammer- anfangs- gruppe	Kammerendteil		
P- Welle		ORS- Gruppe	ST- Strecke	T- Welle	U- Welle
			>0,6 mV		20.00 20.00 20.00
	0,	Q R S			Light Light Light Light
<0,25 mV	<1/4 R-	0- 5-		1/6- ² /3 R	lorfue's single princy
P-Dauer 0,05-0,10 s	TONE NAME NAME NAME NAME NAME NAME NAME NA	Dauer 0,03<0,06 ORS-Dau 0,06-0,10	er S	enigaire M	dans each
PQ-Dauer (PR-Dauer) 0,12-0,20 s		QT-Dauer			
		QU-Dauer			

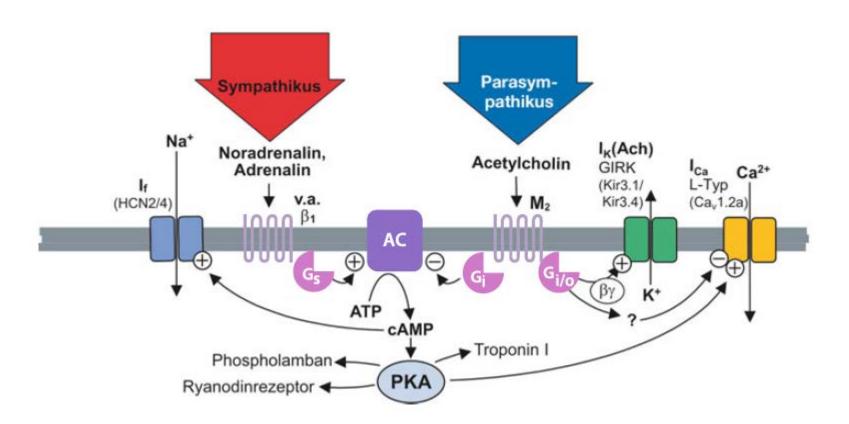
EKG

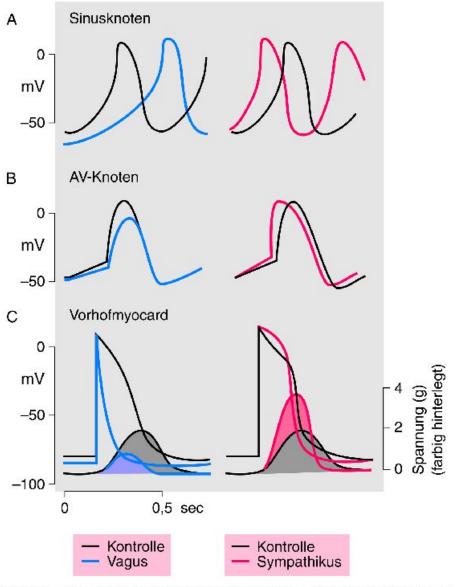

- P-Welle (Vorhoferregung) = 50-100 ms
- PQ-Intervall (AV-Überleitungszeit) = 120-200 ms
- QRS (Kammererregung) = ≤100 ms
- T-Welle (Repolarisation)
- QT-Intervall (Kammerregung inkl. Repolarisation)
 = frequenzabhängig, QTc <390ms (Männer), QTc
 <440ms (Frauen) ± 15%
- U-Welle: Repolarisation der Papillarmuskeln?


Erregungsausbreitung

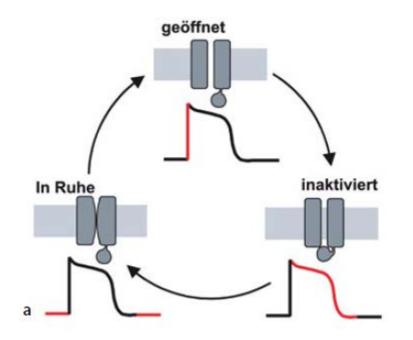
- Sinuskonten (Eigenfrequenz: 60-100)
- AV Knoten (40-50)
- HIS Bündel (20-30)
- Tawara-Schenkel
- Purkinje Fasern

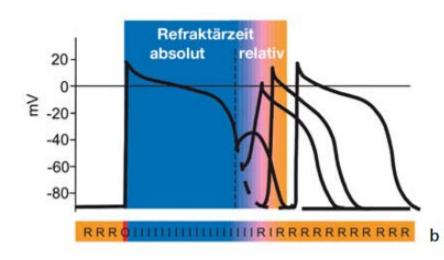
Relevante Ionenströme




Relevante Ionenströme – SK, AV

- I_f (HCN-Kanäle):
 - aktiviert durch hyperpol. und cAMP
 - verantwortl. für ersten Aufstrich (spont. diastol. Depol.)
 - leitet primär Na
- I_{Ca.T}: aktiv bei leichter depol., Ca-Influx
- I_{Ca.L}: aktiv bei starker depol., Ca-Influx
- I_{Ks}: Repolarisation durch K-Efflux
- I_{Kr}: Repolarisation durch K-Efflux
- I_{KACh}: K-Efflux über M₂ -> Diastol. Depol. ↓, Repolarisationszeit ↓
- **I**_{NCX}


Relevante Ionenströme - Myokard


- I_{Na}: Depolarsation
- I_{to}: K-Efflux absinken des Membr.pot.
- I_{Ca.L}: Ca-Einstrom -> Plateauphase
- I_{kr} (hERG): K-Efflux (CAVE: Medikamenteninteraktion)
- I_{Ks}: K-Efflux -> Repolarisation
- I_{K1}: Inwardly-rectifier, hält Membranpotential stabil
- I_{NCX}

Aktories et al., Allgemeine und spezielle Pharmakologie und Toxikologie, 10. A. © Elsevier GmbH 2009, Deutschland

- Störung im Erregungsbildungs- bzw.
 Erregungsleitungssystem
- Können zu kreisenden Erregungen führen und somit Vorhofflimmern, Kammerflimmern und Torsades-de-pointes auslösen
- Antiarrhythmika sollen dies verhindern
- Frequenzkontrolle vs. Rhythmuskontrolle
- CAVE: Antiarrhythmika sind selbst auch Proarryhthmisch!

Reizleitungsstörungen

- Sinuatrialblock I, II, III
- AV Block I, II, III
- WPW-Syndrom
- Schenkelblock

Reizbildungsstörungen

- Sick Sinus Syndrom
- Vorhofflimmern, -flattern
- AVNRT, AVRT
- PSVT, SES, VES, VT
- Kammerflimmern, -flattern

Ursachen:

- Elektrolytverschiebungen (Kalium, Calzium)
- pH-Wert Änderungen
- Ischämie
- Medikamente
- Genetische Defekte
- frühe bzw. späte Nachdepolarisationen
- Reentry
- Dispersion (elektrische Inhomogenität)
- Myocardinfarkt
- Herzinsuffizienz
- KHK

- ...

- Bradykarde vs. Tachykarde Störungen
- Supraventrikuläre vs. Ventrikuläre Störungen

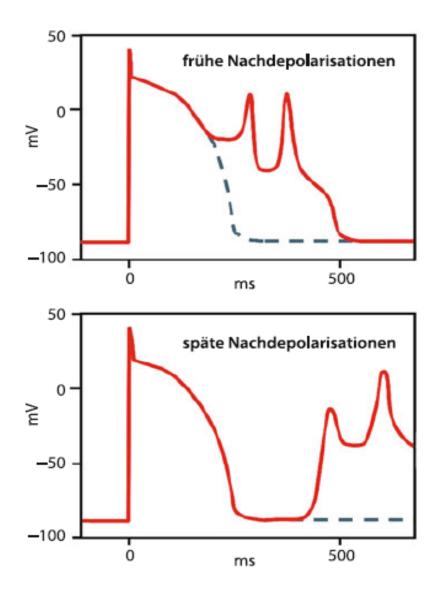
• Symptome:

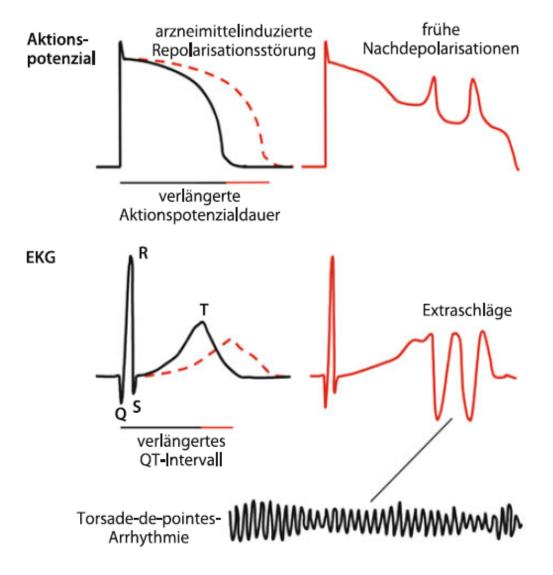
- breites Spektrum an Symptomen
- rezidivierendes VHF oft asymptomatisch
- Palpitationen, Herzrasen, Nervosität, Polyurie
- Angstgefühl, Pulsationen bis in Hals
- Schwäche, Schwindel, Kollaps
- Angina Pectoris, Atemnot
- CAVE: Symptome lassen nicht auf Gefährlichkeit der Arrhythmie schließen!

Diagnostik:

- Anamnese, Blutdruck
- PO2, Elektrolyte (Kalium!!)
- EKG
- Langzeit-EKG
- Elektrophysiologische Untersuchung

Therapie siehe ECR Guidelineschema

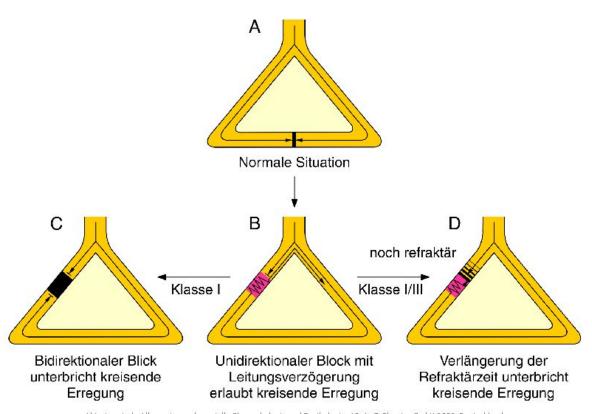

Nachdepolarisationen


frühe Nachdepol.:

- während Repol. (Membranpot. ca. -60 bis
- -40mV) -> plötzlicher Wiederanstieg des
- Potentials -> Tachykardie (->Flimmern)
- Ursache: Verbreiterung des AP (LQT) -> Instabil. der Repol.

• Späte Nachdepol.:

- wenn Repol. nahezu vollständig abgelaufen
- Ursache: hohes Ca++ -> NCX 个



Reentry

- Wird begünstigt durch:
 - lange Wege
 - kurze Refraktärzeit
 - Verzögerung der Erregungsleitung
 - Inhomogenität der Refraktärzeit
 - akzessorische Leitungsbahnen
- Antiarrhythmika unterbrechen Reentry durch:
 - Verlangsamung/Unterbrechung der Erregungsleitung
 - Verlängerung der Refraktärzeit
- Refraktärstrecke = Leitungsgeschw. X Refraktärzeit
 - Klasse I -> Verkürzen Refraktärstrecke
 - Klasse III -> Verlängern Refraktärstrecke

Reentry

Aktories et al., Allgemeine und spezielle Pharmakologie und Toxikologie, 10. A. © Elsevier GmbH 2009, Deutschland

Dispersion (elektrische Inhomogenität)

- Geringfügige Unterschiede von subendocardialem und subepicardialem Myocard hinsichtlich Expression von repolarisierenden Kaliumkanälen
- Subendocardial weniger Repolarisationsreserve -> Reagiert stärker auf repolarisationsverzögernde Einflüsse
- Subepicardial reagiert stärker auf Ischämie durch Öffnung von K_{ATP} Kanälen -> reagiert stärker auf repolarisationsfördernde Einflüsse

Antiarrhythmika - Klassen

- Klasse I: Na-Kanal-Inhibitoren (QT↑↓)
- Klasse II: β-Blocker (PQ 个)
- Klasse III: Kalium-Kanal-Inhibitoren (QT 个)
- Klasse IV: Calcium-Kanal-Inhibitoren (PQ 个)
- Alle negativ inotrop -> Ausnahme Klasse III
- Weitere Substanzen:
 Adenosin, Ivabradin, Digitalisglykoside

Klasse la

Chinidin (CYP2D6), Procainamid, Disopyramid, Ajmalin, Prajmalin

• PD:

- Blockade von offenen (aktivierten) Na-Kanälen
- -> Vorhoftypisch
- (Ausnahme: *Ajmalin, Prajmalin ->* Wirkung in His-Purkinje-System)
- Verlängern AP (zusätzlicher Block von K-Kanälen)
- Anticholinerg (*Chinidin, Disopyramid*) ->
 Digitalisierung bzw. Verapamil
- α-Antagonismus (*Chinidin*)

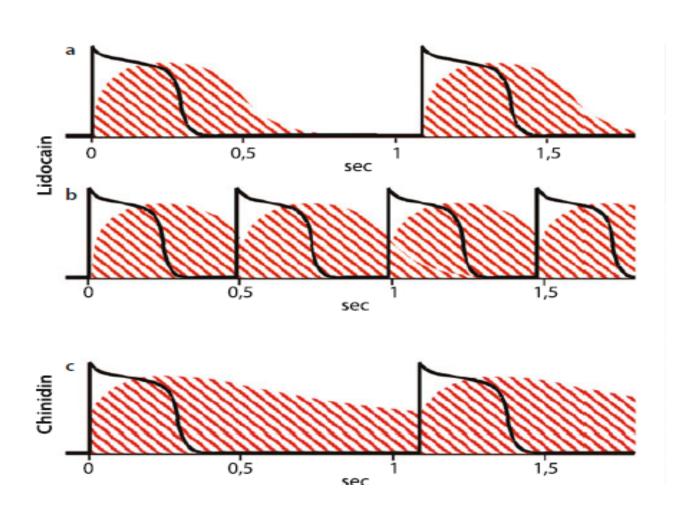
Klasse la

• NW:

- Proarrhythmisch
- Anticholinerg (Chinidin, Disopyramid)
- Durchfall (Chinidin)
- Chindinsynkope
- Kopfschmerzen, Schwindel, Sehstörungen, Tinnitus (Chinonismus)
- drug induced Lupus erythematodes, Knochenmarksaplasie (*Procainamid, Chinidin*)

• Ind:

- kaum mehr im Einsatz
- Ausnahmen: *Ajmalin, Prajmalin* -> ventrikuläre und supraventrikuläre Tachyarrhythmien


Klasse Ib

Lidocain, Phenytoin, Mexiletin, Tocainid

• PD:

- Blockade von geschlossenen Na-Kanälen
- primär Ventrikelwirkung
- Verkürzen AP -> Später Na-Einstrom \downarrow (QT \downarrow)
- Frequenzabhängige Wirkung
- Phenytoin: mögl. Inhbib. Na-K-ATPase
- NW: ZNS (Schwindel, Agitation, Konvulsion, Somnolenz), umfangreiche Enzyminteraktionen (Phenytoin)
- Ind: Ventrikuläre Arryhthmien, Digitalisintox. (Phenytoin)

Use dependence

Phenytoin

- PD: Na_v-Antag., mögl. Inhbib. Na-K-ATPase
- PK:
 - Induz.: CYP3A, 2C, UGT
 - metabol.: 2C9, 2C19
- NW:
 - Schwindel, Ataxie, Kleinhirnatrophie
 - Esosinophile, Leukopenie, Anämie
 - Hirsutismus, Gingivahyperplasie, Osteomalazie
- Ind: Antiarrhythmikum Kl. Ib, primär u sek. generalisierte tonisch-klonische Anfälle, fokale Anfälle, NICHT bei Absence

Klasse Ic

Flecainid, Propafenon (beide CYP2D6)

• PD:

- Blockade von geschlossenen und offenen Na-Kanälen in gleichem Ausmaß
- Kein Einfluss auf AP Dauer
- β-Blockade (*Propafenon*)
- **NW:** Proarryhthmisch, Schwindel, Müdigkeit, Gl-Trakt, Cholestase, verschwommenes Sehen
- Ind: Rhythmisierung des Vorhofflimmerns ohne erkennb. Grunderkrank., paroxysmale supraventr. Tacharrhy., Präexziationssyndrome

Klasse II

Propranolol, Carvedilol, Nebivolol, Atenolol, ...

- PD:
 - β-Blocker
 - neg. inotrop, dromotrop, chronotrop
 - Frequenzkontrolle
 - u.v.a.

PK, NW, Ind, KI siehe Kapitel β-Blocker

Klasse III - Amiodaron

• PD:

- Blockade I_{Kr} und I_{Ks} , aber auch von β , Na, Ca-Kanälen
- QT 个, Refraktärzeit 个,
- kaum neg. Inotrop

• **PK:** BV=25-80%, lipophil, lange t/2 = 31-110d (*Desethylamiodaron*), $V_D = 5000 L$, CYP3A4, 2C9

Klasse III - Amiodaron

• NW:

- Lungenfibrose
- Phototoxisch
- Lipofuszinablagerungen in Kornea
- Hepatotoxisch
- ZNS (Tremor, Parästhesien)
- Hypo- bzw. Hyperthyreose (Inhib. Deiodase, Bindung von T3 an Rezeptor ↓)
- LQT -> Torsade de pointes

 Ind: ventr. u. supraventr. Tachyar. auch bei Pat. mit Herzinsuffizienz

Klasse III

Dronedaron

- PD: wie Amiodaron
- PK: CYP3A4, t/2=1d, biliäre Elimination
- NW: Übelkeit, Erbrechen, Hepatotox., Exanthem, Mortal. bei Herzinsuff. 个, LQT
- KI: NYHA 4, dekompensierte Herzinsuff.

Sotalol

- **PD:** Blockade I_{Kr} und β -Blocker
- PK: renale Elimination
- **NW:** PQ 个, Bradykardie, LQT -> v.a. bei niedrigen Frequenzen

Klasse III

Vernakalant

- PD: Verschiedenste K-Kanäle (I_{kr,} I_{to}),
 Vorhofselektiv -> I_{Kur}, Hemmung Na-Einstrom
- PK: CYP2D6, Glucuronidierung
- NW: Dysgeusie, Niesen, LQT
- Ind: Konversion von neu aufgetretenem VHF

Ibutilid

- PD: Hemmung I_{kr}
- PK: hoher first pass -> nur parenteral
- **NW:** LQT, Torsaden in bis zu 6%
- Ind: Konversion von neu aufgetretenem Vorhofflimmern bzw. -flattern

Klasse IV

Diltiazem, Verapamil, Gallopamil

- PD: Blockade der L-Typ Kanäle primär am Herzen (neg. inotrop, dromotrop, chronotrop) aber auch an Gefäßen
- **PK:** BV=25-55%, t/2=3-7h, CYP3A4
- **NW:** Flush, Hypotension, periphere Ödeme, Kopfschmerzen, Obstipation, AV-Block, Bradykardie
- Ind: supraventrikuläre Tachyarrhythmie, Angina Pectoris, Vorhofflimmern
- **CAVE:** andere neg. dromotrop, chronotrop, inotrope Substanzen!
- WW: Verapamil kann Digoxinspiegel erhöhen!

Weitere Modulatoren am Herzen

Adenosin

- **PD:** A_1 -> K-Efflux \uparrow -> neg. dromotrop, chronotrop, Refraktärzeit in VH \downarrow
- PK: t/2=10s, parenteral
- NW: Bronchospasmus, Dyspnoe, Schwindel
- Ind: Akuttherapie supraventr. Tachyar.

Ivabradin (CYP3A4)

- **PD:** Block des I_f -> diastol. Depol. \downarrow -> Sekung HF um ca. 10 Schläge/Minute
- PK: renale Elimination
- **NW:** Sehstörungen (Lichtempfindlichkeit), Obstipation, Diarrhoe, Bradykardie, AV-Block
- Ind: chronische Angina Pectoris

- häufigste Rhythmusstörung
- Inzidenz altersabhängig:
 - 5. Dekade -> ca. 1%
 - 7. Dekade u. älter -> ca. 10%

- Ätiologie:
 - Primäres VHF beim Herzgesunden (ca. 15%)
 - **Sekundäres VHF:** Mitralvitien, KHK, Herzinfarkt, Herzinsuffizienz, Hypertonie, Hyperthyreose, Alkoholtoxisch (holiday-heart-syndrome), ...

Pathogenese:

- Foci aus Pulmonalvenen
- Dilatierte Vorhöfe
- Ischämische und/oder geschädigtes
 Vorhofmyocard
- Kreisende Erregung mit Frequenz von 350-600/min (Vgl. Vorhofflattern 250-300/min)
- elektrisches Remodeling

Gefahren:

- Thromboembolien
- Tachyarrhythmien

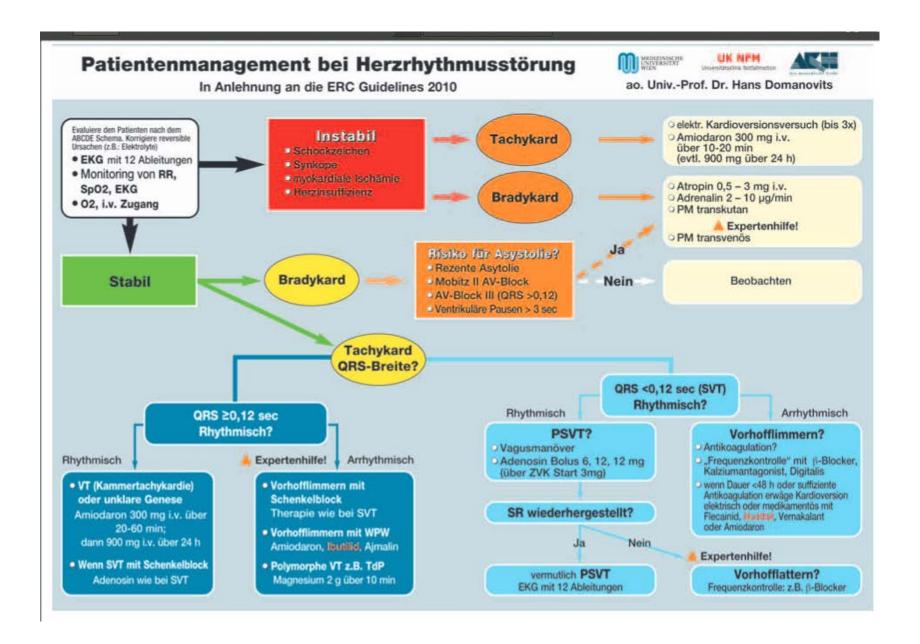
• Symptome:

- meist bei paroxysmaler Form
- Belastungsdyspnoe, Polyurie, Nervosität
- Palpitationen, Angina Pectoris Beschwerden
- Rezidive bzw. chronisches VHF oft asymptomatisch
- Diagnostik: EKG

Therapie:

- Frequenz- vs. Rhythmuskontrolle
- Verhinderung thromboembolischer Komplikationen

Vorhofflimmern

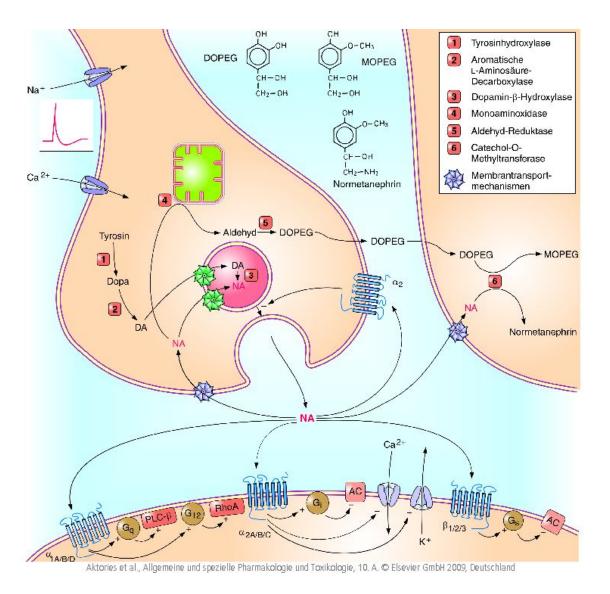

 VHF <48h -> sofortige Kardioversion, elektrisch oder pharmakologisch (Flecainid, Ibutilid, Vernakalant, Amiodaron)

- VHF >48h ->
 - Frequenzkontrolle + Antikoagulation
 - nach 3 Wochen Kardioversion möglich bzw. wenn transösophageales Echo unauffällig schon vorher
- Rezidivrate nach elektrischer Kardioversion
 - 30% nach 1 Woche
 - 75% nach 1 Jahr
 - Antiarrhythmika als Rezidivprophylaxe

Antikoagulation bei VHF

- Ca. 20% der Schlaganfälle durch VHF verursacht
- Abschätzung des Risikos mittels CHA₂DS₂VASc
 - 2 Punkte Risiko für Thromboemb. -> 1,3%/J
 - 4 Punkte -> 4%/J
 - 6 Punkten -> 9,8%/J
- Risiko intrakranieller Blutung unter VKA (INR 2-3) -> 0,3%/J
- Empfehlung:
 - 0 Punkte -> Keine Therapie oder ASS
 - 1 Punkt -> VKA od NOAK od ASS
 - ≥ 2 Punkte -> VKA od NOAK

CHA ₂ DS ₂ VASc	Punkte
Congestive heart failure	1
Hypertension	1
Age >75a	2
Diabetes mellitus	1
Stroke/TIA	2
Vascular disease	1
Age >65a	1
Sex category = female	1


Magnesium

 Hypomagnesiämie oft mit Hypocalzämie und Hypokaliämie assoziiert

 1-2 g MgSO4 zur Terminierung von Torsade de Pointes!

Wirkmechanismus unklar, vermutlich calziumantagonistische Wirkung

- Physiologie Sympathikus
- Einteilung β-Blocker
- Wirkungen und Nebenwirkungen β-Blocker
- Indikationen und Kontraindikationen β-Blocker
- Wechselwirkungen β-Blocker

- Grenzstrangganglion
- Erstes Neuron ACh
 Zweites Neuron NA (Ausnahme: Schweißdrüsen ACh)
- $\alpha_1 = Gq$, $\alpha_2 = Gi/o$, $\beta_{1,2,3} = Gs$

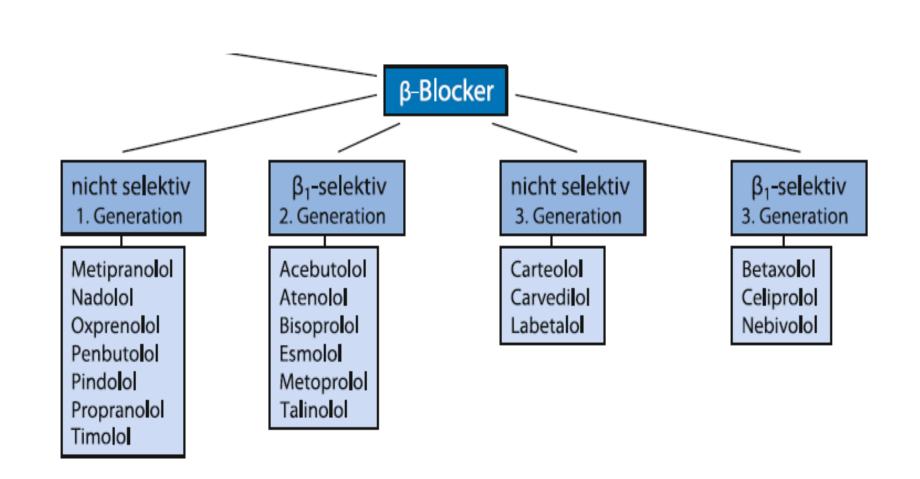
Kardiovaskulär:

- Vasokonstriktorisch (α_1)
- Vasodilatatorisch (β₂)
- positiv chronotrop, dromotrop, inotrop, lusiotrop, bathomtrop (β_1)
- Reninfreistzung (β_1)
- Freisetzung von Katecholaminen aus NNM (nACh)

Stoffwechsel:

- Aktivierung der Na-K-ATPase in Muskeln (β₂)
- Lipolyse ($\beta_{1,2,3}$)
- Glykogenolyse (β_2)
- Insulinfreisetzung (β_2)
- Hemmung Insulinfreisetzung (α_2)
- Thermogenese (β_3)

Innere Organe:


- Hemmung der Darmmotilität (α_2)
- Hemmung der Darmdurchblutung (α_1)
- Erweiterung der Bronichalmuskulatur (α_2 , β_2)
- Beschleunigung Cilienschlag (β₂)
- Blockade Mastzelldegranulation (β_2)
- Erschlaffung der Blase und des Uterus (β_2 , β_3)
- Kontraktion des Schließmuskels der Blase (α_1)

• ZNS, PNS:

- Steigerung Transmitterfreisetzung (β₂)
- Hemmung Transmitterfreisetzung (α_2)
- zentrale Senkung Aktionspotentialfrequenz des Sympathikus (α_2)
- Mydriasis (α_1)
- Steuert Ejakulation (α_1)
- Tremor (β_2)

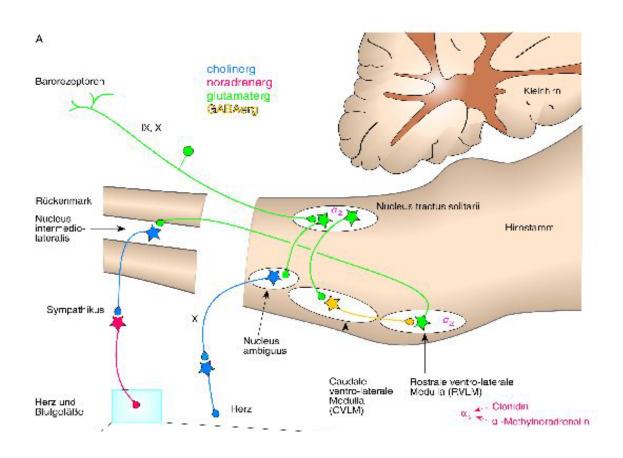
Unterschiede hinsichtlich:

- Subtypselektvität
- intrinsische Aktivität
- Membranstabilisierung
- zusätzliche Vasodilatation
- Lipophilie

- 1. Generation unselektiver Antagonismus Sotalol, Pindolol, Timolol, Cavedilol, Propranolol, ...
- 2. Generation selektiver β₁-Antagonismus Atenolol, Acebutolol, Bisoprolol, Esmolol, Metoprolol, ...
- Mit intrinsischer Aktivität partieller Agonismus Acebutolol, Pindolol, Oxprenolol, Labetalol, Celiprolol, Carteolol, ...

• **3. Generation** – zusätzlich vasodil. Effekte Nebivolol – β_1 -Antagonist, NO-Donator Celiprolol - β_1 -Antagonist, β_2 -Agonist, NO-Donator Carvedilol – unselektiv, α_1 -Antagonist, Ca⁺⁺-Antag. Labetalol – unselektiv, α_1 -Antagonist Carteolol – unselektiv, β_2 -Agonist, NO-Donator,

Zusätzliche Effekte


Propafenon – β-Antag. und Na-Kanal-Antagonist (Klasse Ic Antiarrhy.)
Sotalol - β-Antag. und K-Kanal-Antagonist (Klasse III Antiarrhy.)

- Herzinsuffizienz nur folgende zugelassen: Bisoprolol, Metoprolol, Carvedilol, Nebivolol
- Lipophile hepatische Elimination Propranolol, Nebivolol, Carvedilol, Bisoprolol
- Hydrophile renale Elimination Atenolol, Sotalol, Acebutolol
- CYP2D6 Metabolismus Metoprolol, Carvedilol, Nebivolol, Timolol

β-Blocker – Therapeutische Wirkungen

- Negativ chronotrop
- Negativ dromotrop
- Negativ bathmotrop
- Katecholamintoxizität ↓
- Myocardialer O₂-Bedarf ↓
- Hemmung der Reninfreisetzung
- Resetting Barorezeptorreflex
- Präsynaptische NA-Freisetzung ↓
- ZNS: Feuerfrequenz Sympathikus ↓

Barorezeptorreflex

β-Blocker – Indikationen I

- Klasse II Antiarrhythmikum Frequenzkontrolle
- Angina Pectoris
- Status Post Myocardinfarkt
- Herzinsuffizienz Bisoprolol, Metoprolol,
 Carvedilol, Nebivolol (CAVE: Dosis einschleichen)
- Hypertonie Effekt erst nach Wochen sichtbar

β-Blocker – Indikationen II

- Hyperthyreose
- Phäochromozytom (CAVE: zuerst α Blockade)
- Tremor
- Angststörungen
- Glaukom
- Migräneprophylaxe Propranolol, Metoprolol, Bisoprolol – 5-HT_{2R} Antagonismus

β-Blocker – NW I

- Bradykardie
- AV-Block
- Bronchokonstriktion
- Sexuelle Dysfunktion
- Schwindel, Müdigkeit, Kopfschmerzen
- Verschleierung Hypoglykämie
- Hemmung Glycogenolyse

β-Blocker – NW II

- TG ↑, LDL ↑, HDL ↓ (hauptsächlich bei unselektiven β-Blockern)
- Auslösung bzw. Verschlechterung einer Psoriasis
- Kurzzeitige RR-Steigerung
- Insulinsresitenz ↑
- Hyperkaliämie
- Muskelschwäche, -krämpfe
- Koronarspasmen (CAVE: Vasospatische Angina, Mobus Raynaud)

β-Blocker - Kontraindikationen

- Asthma bronchiale, COPD
- Vasospastische Erkrankungen
- AV-Block
- Bradykardie
- Dekompensierte Herzinsuffizienz

- Schwangerschaft -> Vorzeitige Wehen
- Diabetes Mellitus

Wechselwirkungen

- Antihypertensiva –> gegenseitige Wirkungsverstärkung
- NA, Adrenalin, MAO-Inhib. -> Hypertonie
- Kardioselektive Ca-Antag., Digitalis -> Bradykardie, AV-Block
- Antidiabetika –> Verschleierung Hypoglykämie, Hypoglykämierisiko ↑
- SSRIs, Antipsychotika -> CYP2D6 Interaktion
- Muskelrelaxantien -> Muskelschwäche 个

 Reboundphänomen: Rezeptor-Upregulation durch langen Gebrauch -> β-Blocker immer ausschleichen!!!

Bilder aus

 Aktories, K., Förstermann, U., Hofmann, F., Starke, K. (2009). Allgemeine und spezielle Pharmakologie und Toxikologie. 10. Auflage. München: Elsevier.

Freissmuth, M., Offermanns, S., Böhm, S.
 (2012). *Pharmakologie & Toxikologie*. 1.
 Auflage. Heidelberg: Springer Medizin Verlag.

- Aktories, K., Förstermann, U., Hofmann, F., Starke, K. (2009).
 Allgemeine und spezielle Pharmakologie und Toxikologie. 10.
 Auflage. München: Elsevier.
- Brunton, L.L., Chabner, B.A., Knollmann, B.C. (2011). Goodman and Gilman's The Pharmacological Basis of Therapeutics, Twelfth Edition. McGraw-Hill Companies.
- Classen, M., Diehl, V., Kochsiek, K. (2009) Innere Medizin. 6.
 Auflage. München: Elsevier.
- Freissmuth, M., Offermanns, S., Böhm, S. (2012). Pharmakologie
 & Toxikologie. 1. Auflage. Heidelberg: Springer Medizin Verlag.
- Karow, T. & Lang-Roth, R. (2011). *Allgemeine und spezielle Pharmakologie und Toxikologie*. 19. Auflage. Köln.
- Herold, G. (2013). Innere Medizin. Köln.

Danke für die Aufmerksamkeit!