Pharmakologie-Tutorium Block 11

Mag. Karolyi und titellos Kuran

Klinik: Herzinsuffizienz

- Unfähigkeit des Herzens, den Körper ausreichend mit Sauerstoff zu versorgen
- Ursachen:
 - KHK, arterielle Hypertonie (50%), Mitralinsuffizienz, Kardiomyopathien
- Einteilung in verschiedene Stadien nach NYHA
 - I. Keine Beschwerden
 - II. Beschwerden bei mittlerer bis schwerer Belastung
 - III. Beschwerden bei geringer Belastung
 - IV. Ruhebeschwerden

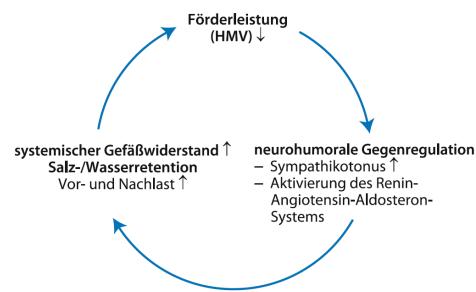
Klinik: Herzinsuffizienz

• Symptome:

- Dyspnoe = Atemnot
- Ödeme bzw. Rückstauungen:
 - Lungenödem bei Linksherzinsuffizienz -> feuchte RG bei Auskultation
 - Akute Therapie notwendig, da Gasaustausch beeinträchtigt wird!
 - Periphere Ödeme
 - In der Nacht (Horizontale) rückresorbiert, daher nächtlicher Harndrang
 - Jugularvenen-Stauung, Leberstauung

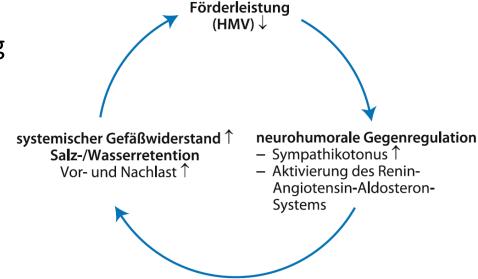
• Labor:

- n-terminales BNP = Marker für Herzbelastung
 - Hoher negativer prädiktiver Wert -> "das D-Dimer der Herzinsuffizienz"


Klinik: Herzinsuffizienz

- "BNP ist das D-Dimer der Herzinsuffizienz"
 - Avelino Kuran, März 2014

Parameter	HI unwahrscheinlich	HI möglich	HI sehr wahrscheinlich
BNP	<100 pg/ml	100-400 pg/ml	>400pg/ml
n-t-Pro-BNP	<400 pg/ml	400-2000 pg/ml	>2000 pg/ml


Klinik: Herzinsuffizienz – Pathophysiologie

- Das Verständnis der Pathogenese ist essenziell für die korrekte Therapieplanung:
 - 1. HMV ist zu niedrig
 - 2. Kompensation der verminderten kardialen Leistung durch Sympathikus-Aktivierung
 - 3. Aktivierung des RAAS
 - 4. ADH-Sekretion
 - 5. Freisetzung atrialer natriuretischer Peptide
 - 6. (Re)modeling
 - 7. Herzhypertrophie

Klinik: Herzinsuffizienz – Pathophysiologie

- Das Verständnis der Pathogenese ist essenziell für die korrekte Therapieplanung:
 - 1. HMV ist zu niedrig
 - 2. Kompensation der verminderten kardialen Leistung durch Sympathikus-Aktivierung
 - β_1 -Aktivierung: Herz und Niere
 - α_1 -Aktivierung: Anstieg der Nachlast
 - 3. Aktivierung des RAAS
 - Angiotensin II -> Nachlast ↑
 - Aldosteron -> Vorlast 个
 - 4. ADH-Sekretion
 - Wasserretention -> Vorlast ↑
 - 5. Freisetzung atrialer natriuretischer Peptide
 - ANP, BNP, CNP -> Vorlast und Nachlast ↓
 - 6. (Re)modeling
 - 7. Herzhypertrophie

Der Plasmaspiegel von BNP korreliert gut mit der Schwere der Herzinsuffizienz

- Therapie:
 - Kausal
 - Symptomatisch
 - Allgemeinmaßnahmen
 - Medikamentöse Therapie
 - Kardiale Resynchronisation
 - Implantierbarer Cardioverter-Defibrillator = ICD
 - Herztransplantation

- Kausale Therapie:
 - Blutdrucksenkung bei arterieller Hypertonie
 - Revaskularisation bei Herzinfarkt
 - Drainage bei Perikard-Tamponage
 - Atropin, Schrittmacher beibBradykarder Rhythmusstörung
 - Kardioversion bei tachykarder Rhythmusstörung

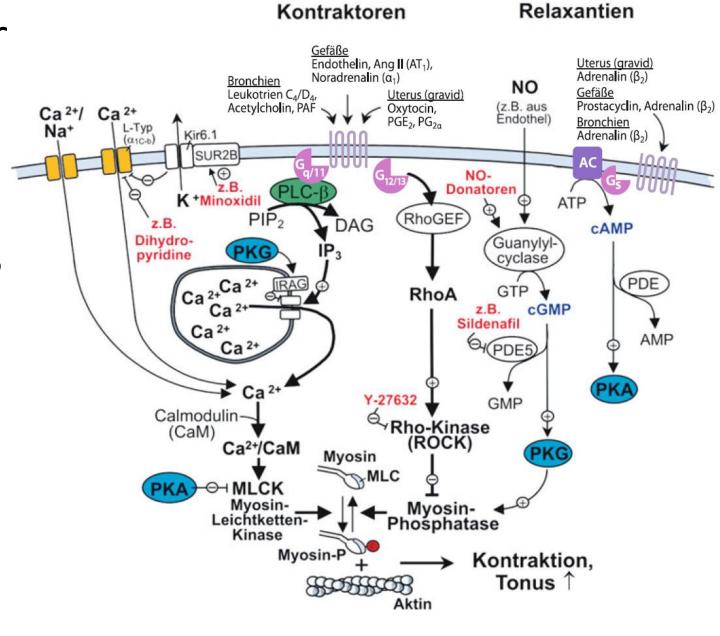
- Allgemeinmaßnahmen:
 - Vermeidung kardiovaskulärer Risikofaktoren
 - Kochsalz-arme Diät (max. 3g NaCl/d)
 - Vermeidung einer Hypokaliämie und Hyponatriämie
 - Angeleitetes Sportprogramm bei stabiler HI
 - Vermeidung von Medikamenten, die eine HI verschlechtern können
 - NSAR, Glitazone, Verapamil, Gallopamil, Diltiazem, Anthracycline, Trastuzumab, TCA, Lithium, β-Mimetika, ...

- Medikamentöse Therapie der chronischen Herzinsuffizienz:
 - Verbesserung der Prognose:
 - ACE-Hemmer
 - AT₁-Antagonisten
 - β-Blocker ohne ISA
 - Aldosteron-Antagonisten
 - Ivabradin
 - Verbesserung der Symptomatik:
 - Diuretika
 - Digitalisglykoside

• Indikationen der Medikamente je nach NYHA-Stadium

Medikament	NYHA I	NYHA II	NYHA III	NYHA IV
ACE-Hemmer	indiziert	indiziert	indiziert	indiziert
AT ₁ -Antagonisten	agonisten bei ACE-Hemmer Intoleranz			
β-Blocker	nach Myokardinfarkt bei Hypertonie	indiziert	indiziert	indiziert
Diuretika	bei Hypertonie	bei Flüssigkeitsretention	indiziert	indiziert
Aldosteron-Rezeptor-Antagonisten	-	bei Hypokaliämie	indiziert	indiziert
Digitalisglykoside	bei Tachyarrhythmie bei Vorhof- flimmern	bei Tachyarrhythmie bei Vorhofflimmern	indiziert	indiziert

Antihypertensiva, Vasodilatantien

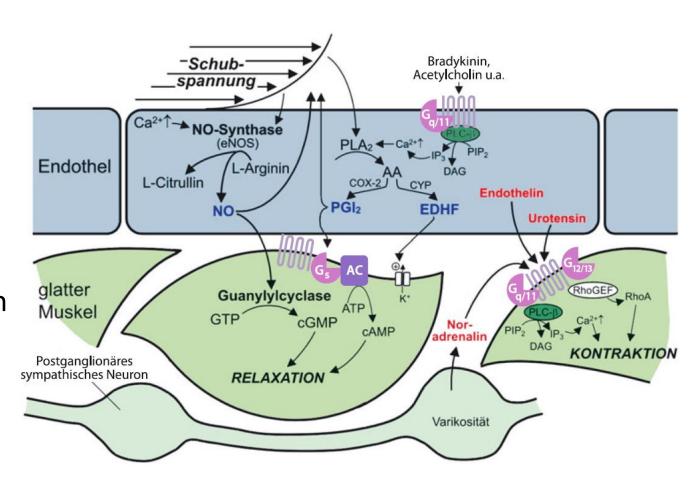

Wie behandelt man eine erektile Dysfunktion?

Antihypertensiva und Vasodilatantien

- Tonusregulation in der glatten Muskulator
- NO-Donatoren
- Phosphodiesterase-Hemmer
- Calcium-Kanalblocker
- Endothelin-Antagonisten
- Kalium-Kanalöffner
- (Di)Hydralazin
- Klinik: Angina pectoris

Tonusregulation der glatten Muskulatur

- Anstieg von Ca²⁺ führt zur Kontraktion
- Anstieg von cAMP und cGMP führt zu Dilatation
- Schlüsselenzyme:
 - Myosin-Leichtketten-Kinase
 - Myosin-Leichtketten-Phosphatase


Wirkung/Prinzip	Rezeptor	Pharmakon (Beispiel)	Spezifische glatte Muskulatur	Erwünschte Wirkung
Relaxation durch Antagonismus an G _q /G ₁₁ -gekoppel- ten Rezeptoren	α_1 -adrenerg	Prazosin	Gefäß	totaler peripherer Widerstand \downarrow
		Tamsulosin	M. sphinter vesicae	Verbesserung des Harnabflusses
	Angiotensin II (AT ₁)	Losartan	Gefäß	totaler peripherer Widerstand \downarrow
	muskarinerg (v.a. M ₃)	Ipratropium (unselektiv)	Bronchien	A temwegs widers tand \downarrow
		Butyl-Scopolamin (unselektiv)	Magen-Darm-Trakt, Gallenwege, Harnwege	Lösung von spastischen Kontraktionen, Relaxation
		Tropicamid (unselektiv)	M. sphinkter pupillae	Mydriasis
		Solifenacin (M ₃)	M. detrusor vesicae	Verminderung des Harndrangs
	Oxytocin-Rez.	Atosiban	Uterus	Wehenhemmung
	Endothelin (ET _A)	Sitaxentan	Pulmonalgefäße	Widerstand im Lungenkreislauf
Relaxation durch Agonismus an G _s -gekoppelten Rezeptoren	β_2 -adrenerg	Fenoterol	Bronchien	A temwegs widers tand \downarrow
			Uterus	Wehenhemmung
	Prostazyklin- Rezeptor (IP)	lloprost	Gefäße	Dilatation
Kontraktion durch Agonismus an G _q / G ₁₁ -gekoppelten Rezeptoren	M ₃ -muskarinerg	Bethanechol (unselektiv)	M. detrusor vesicae	Blasenentleerung ↑
		Pilocarpin (unselektiv)	M. sphincter pupillae	Miosis
	Prostaglandin E ₂ (EP2)	Dinoproston	Uterus	Uteruskontraktion
	Vasopression V ₁ - Rezeptor	Terlipressin (prodrug)	Gefäß	Vasokonstriktion

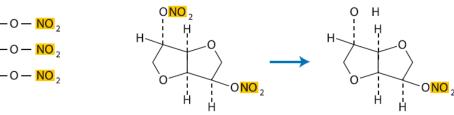
Beeinflussung des Tonus der Gefäße

- Verschiedene Transmitter wirken ein:
 - Konstriktion:
 - Noradrenalin
 - Angiotensin II
 - Endothelin
 - Urotensin
 - Dilatation:
 - Adrenalin
 - Prostazyklin
 - NO = Stickstoffmonoxid
 - ANP, BNP, CNP

Modulation des Gefäßtonus durch das Endothel

- NO und PGI₂ sind die wichtigsten Vasodilatatoren
 - cGMP und cAMP führen zur Aktivierung der MLCP und Hemmung der MLCK
- Sympathikus:
 - Noradrenalin aus sympathischen Varikositäten freigesetzt und über α_1 -Aktivierung Vasokonstriktion

Vasodilatierende Pharmaka

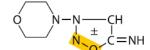

NO-Donatoren

 Glyceroltrinitrat, ISMN, ISDN, PETN, Molsidomin, Natriumnitroprussid

Dynamik:

- NO aktiviert die sGC -> cGMP -> PKG phosphoryliert MLCP und MLCK
- Dilatation der großen Gefäße, v.a. der Venae cavae
 - Vorlast ↓ = LVEDP↓
 - O₂-Verbrauch des Herzens ↓
 - Endokard-Perfusion 个
 - Dilatation der Koronargefäße
- Thrombozytenhemmung

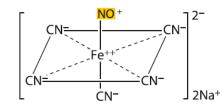
Organische Nitrate



Isosorbidmononitrat Isosorbiddinitrat (ISMN) (ISDN)

Pentaerythrity Itetranitrat

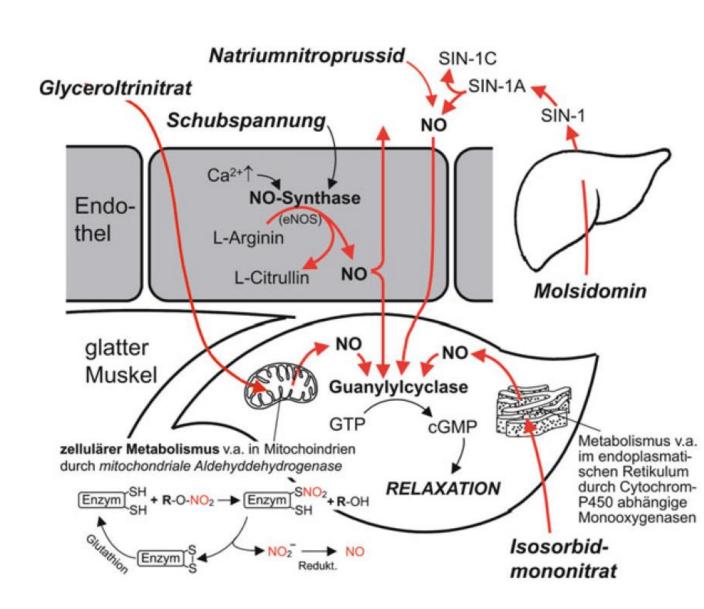
Molsidomin


Glyceroltrinitrat

Linsidomin (SIN-1)

SIN-1C

Natriumnitroprussid


NO-Donatoren

• Kinetik:

- Glyceroltrinitrat:
 - Hoher first-pass-effect -> nur sublingual/i.v. verabreichbar
 - HWZ = 1-3min -> Wirkung hält nur 20-30min an
- ISMN, ISDN:
 - Gute Resorption nach oraler Gabe, ISDN wird zu ISMN
 - ISDN = lipophiler = schnellere Resorption
 - HWZ von ISMN = 5h -> Wirkung setzt innerhalb 10-30min ein
- Molsidomin:
 - Aktivierung in Leber zu Linsidomin (SIN-1), nicht enzymatische NO-Freisetzung
 - HWZ = 1-2h
- Nitroprussidnatrium
 - Nicht enzymatische Freisetzung von NO
 - Auch Freisetzung von Cyanid-Ionen -> Atmungskette↓
 - HWZ = 3-4min, nur i.v. Gabe

NO-Donatoren und Tachyphylaxie

- Glyceroltrinitrat, ISDN, ISMN und PETN werden durch ALDH-2 "aktiviert"
- ALDH-2 wird bei dieser Reaktion oxidiert
 - Mitochondriale Thiole reduzieren ALDH-2
 - Die Thiol-Reserven können erschöpfen = NO kann nicht mehr freigesetzt werden

NO-Donatoren und Tachyphylaxie

- Hypothese: Molsidomin und Nitroprussidnatrium setzen NO nichtenzymatisch frei, daher gibt es weniger Toleranz-Entwicklung
 - Die nicht-enzymatische Freisetzung erklärt auch die unselektivere Gefäßdilatation
- Weitere wichtige Grundlagen der Toleranzentwicklung:
 - Neurohumerale Gegenregulation:
 - Sympathikus 个
 - RAAS ↑
 - ADH 个
 - Effekte: RR ↑, PKC ↑ -> NADPH-Oxidasen ↑ -> oxidativer Stress -> Peroxynitrit ↑
 - ->eNOS \downarrow , sGC \downarrow , PKG \downarrow

NO-Donatoren und Tachyphylaxie

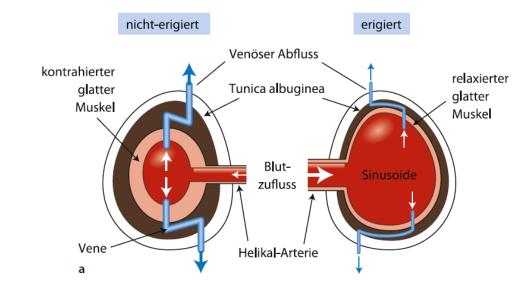
- Take home messages:
- Die Wirkung der NO-Donatoren lässt innerhalb eines Tages stark nach
- Die Toleranz ist rasch reversibel mit nitratfreien Intervallen kann die Wirkung wieder hergestellt werden

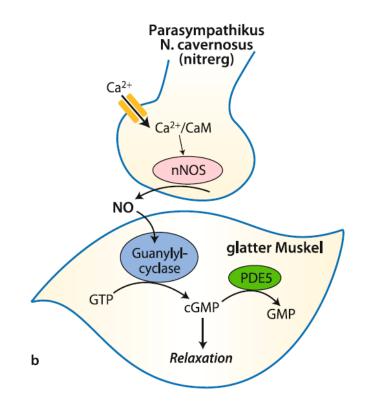
NO-Donatoren

• Nebenwirkungen:

- Kopfschmerzen
- Orthostatische Hypotension
- Schwindel
- Reflextachykardie
- Hautrötung

Kontraindikationen:


- Einnahme von PDE-5-Inhibitoren (Sildenafil, Tadalafil, Vardenafil)
- Kreislaufschock
- Symptomatische Hypotonie


NO-Donatoren

- Anwendung: Koronare Herzkrankheit
 - Akutes Ereignis -> Anfallskupierung
 - Nitroglycerin: 1 Kapsel à 0,8mg sublingual oder 2 Sprühstöße
 - Blutdruck kontrollieren, nicht bei RR syst. <90-100mmHg!
 - Langfristige Anfallsprophylaxe:
 - ISDN, ISMN, PETN, Glyceroltrinitrat-Pflaster, Molsidomin (2. Wahl)
 - Nitratfreie Intervalle einhalten
- Sonderfall: Vasospastische AP = Prinzmetal-Angina

PDE-5-Inhibitoren

- Sildenafil, Vardenafil, Tadalafil
- Dynamik:
 - Hemmung der Phosphodiesterase 5 erhöht intrazelluläres cGMP
 - Förderung der dilatativen Wirkung des Parasympathikus auf das Corpus cavernosum
- Kinetik:
 - Rasche Resorption nach oraler Gabe, Wirkung nach 30min-1h erzielt
 - CYP3A4, CYP2C9, HWZ= 4h Silde, Varde, 17h Tada
- NW:
 - Kopfschmerzen, Schwindel, Flush, Dyspepsie, Nasenschleimhautkongestion
 - Sildenafil, Vardenafil: Störung des Farbsehens (PDE-6)

Calcium-Kanal-Blocker

- Dihyodropyridine, Phenylalkylamine, Benzothiazepine:
 - Hemmung der L-Typ-Calcium-Kanäle -> Ca²⁺ ist das wichtigste Ion für die Vasokonstriktion
- Dihydropyridine:
 - Nifedipin, Nisoldipin, Amlodipin, Felodipin,...
 - "Gefäßselektivität"
- Phenylalkylamine:
 - Verapamil, Gallopamil
 - Wirkung auf Herz und Gefäße
- Benzothiazepine:
 - Diltiazem
 - Wirkung auf Herz und Gefäße

Calcium-Kanal-Blocker – Dihydropyridine

• Dynamik:

- Vasodilatation der Arterien und Arteriolen, inkl. Koronararterien
- Nachlast↓
- Kinetik: CYP3A4

Substanz	Wirkmaximum (h)	HWZ (h)
Nimodipin	1	1-2
Nifedipin	0,5 - 3(Retard)	2-3
Nisoldipin	1-2	8-15
Lercanidipin	1-3	8-10
Nilvadipin	1-2	15-20
Felodipin	1,5 - 4(Retard)	20-25
Amlodipin	6-10	35-50

Calcium-Kanal-Blocker – Dihydropyridine

Nebenwirkungen:

- Kopfschmerzen, Flush, Hitzewallungen
- Orthostatische Hypotonie, Schwindel
- Periphere Ödeme -> Kompressionsstrümpfe
- Reflextachykardie v.a. bei schnell wirkenden
- Gingivahyperplasie

Anwendung:

- Arterielle Hypertonie -> Langwirksame Dihydropyridine!
- KHK: Intervalltherapie -> Reflextachykardie = schlecht!
- Prinzmetal-Angina

Kontraindikation:

Akutes Koronarsyndrom → Coronary steal!

Calcium-Kanalblocker

- Verapamil, Gallopamil, Diltiazem
- Dynamik:
 - Neben Gefäßdilatation auch negativ inotrop, chronotrop
- Kinetik:
 - Ausreichende Resorption nach oraler Gabe, CYP3A4, HWZ = 5h
- Nebenwirkungen:
 - Obstipation
 - Bradykardie, AV-Block, negativ inotrope Effekte
 - Kopfschmerzen, Flush, Hitzewallungen, orthostatische Hypotonie, Schwindel, Gingivahyperplasie
- Kontraindikationen:
 - Gemeinsame Anwendung mit β-Blockern, Herzinsuffizienz
- Anwendung:
 - Klasse IV-Antiarrhythmika -> supraventrikuläre Tachykardien
 - Hypertension
 - Intervalltherapie bei KHK

Endothelin-Antagonisten

- Bosentan, Ambrisentan
- Dynamik:
 - ET_A/ET_B-Blockade: Bosentan
 - ET_A-Blockade: Ambrisentan
- Kinetik:
 - Gute Resorption, CYP3A4, CYP2C9, HWZ =5h Bose, 15h Ambri
- Nebenwirkungen:
 - Kopfschmerzen, Flush, Ödeme, Nasenschleimhautkongestion, Transaminasenanstieg (Sitaxentan wegen Heptox vom Markt genommen)
- Anwendung:
 - Pulmonale Hypertonie

Kalium-Kanal-Öffner

- Minoxidil, Nicorandil, Pinacidil, Cromakalim, Diazoxid
- Dynamik:
 - Öffnung ATP-sensitivier Kalium-Kanäle -> Hyperpolarisation -> Ca²⁺ Influx↓
 - Hemmung der Insulin-Freisetzung
 - Nicorandil zusätzlich NO-Donator
- Kinetik:
 - Orale Resorption ausreichend
 - Minoxidil = ProD, durch Sulfatierung aktiviert
- Nebenwirkungen:
 - Reflextachykardie, RAAS个
 - Kopfschmerzen
 - Perikarditis (4%), Perikarderguss
 - Hypertrichose
- Anwendung:
 - Reservemittel bei Hypertension, Diazoxid bei Insulinom und Hypoglykämie
 - Topisch: Haarwuchsmittel

Hydralazin, Dihydralazin

- Dynamik: unbekannt
 - Vasodilatation von Arterien und Arteriolen -> Nachlast↓
- Kinetik:
 - Hoher first-pass-effect nach oraler Gabe
 - Acetylierung -> Schnell/Langsam
- Nebenwirkungen:
 - Kopfschmerzen, Flush, Reflextachykardie
 - Hautausschläge
 - SLE-ähnliches Krankheitsbild mit ANA
- Anwendung:
 - Reserve bei Hypertonie, nur in Kombination
 - Hydralazin + ISDN bei afroamerikanischen Patienten mit NYHA III + IV